Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.756
1.
Waste Manag ; 181: 176-187, 2024 May 30.
Article En | MEDLINE | ID: mdl-38614039

This study presented the influence of two types of clay: kaolin (Kao) and red clay (RC) on the chemical and physical properties of ceramic specimens when galvanic sludge (GS) is incorporated to encapsulate heavy metals. Samples were obtained of GS from the industrial district of Manaus - Amazonas State, Brazil, and kaolin (Kao), and red clay (RC) from the Central Amazon. A fourth sample was prepared by mixing GS, Kao, and RC in the ratio 1:1:8 (GS + Kao + RC). This mixture was ground, and ceramic specimens were prepared, and heat treated at 950 °C and 1200 °C for three hours for phase detection, compressive strength, leaching of Fe, Ni and Cr metals and life cycle assessment. Galvanic sludge, Kao, and RC were also, and heat treated to at 950 °C and 1200 °C for three hours, obtaining GS950, GS1200, Kao950, Kao1200, RC950, and RC1200. The samples were submitted to XRF, XRD, Rietveld refinement, Mössbauer spectroscopy, TG/DTG/DSC, and SEM. The results show that the formation of nickel oxide and a spinel solid solution of the type Fe3+{Fe1-y3+,Fe1-x2+,Nix2+,Cry3+}O4 (in which [] = tetrahedral site, {} octahedral site) occurs in GS1200, which is caused by sulfate decomposition to SO2. At 1200 °C, heavy metals are encapsulated, forming other phases such as nickel silicate and hematite. Life cycle assessment was used to verify the sustainability and value of GS in clay for making bricks, and it indicated that the production of ceramics is feasible, reduces the use of clays, and is sustainable.


Ceramics , Clay , Kaolin , Metals, Heavy , Sewage , Kaolin/chemistry , Clay/chemistry , Metals, Heavy/chemistry , Metals, Heavy/analysis , Ceramics/chemistry , Sewage/chemistry , Brazil
2.
PLoS One ; 19(4): e0300102, 2024.
Article En | MEDLINE | ID: mdl-38557823

Backfill mining is an effective way to solve environment pollute, surface subsidence, and groundwater system damage which caused by coal mining. However, the complex underground environment may change the physical and mechanical properties of the backfill body, which poses a risk of strength failure. This paper analyzed the failure of gangue-based cemented backfill body which made up of gangue and fly ash. The results show that physicochemical reactions will generate quartz, kaolinite, and other high-strength substances; hydration reaction between the fine particles will generate hydrocalcium silicate and other C-S-H gels, they wrapped gangues as a whole, which provide a high strength of the cemented backfill body. Several experiments were carried out in order to find the reason for failure in samples under loads. The conclusion drawn as following: (1) When the load is large, the cracks extend from the surface of the samples to the interior, at the same time, the length and width of the cracks increasing obviously and connecting as net. Especially the external load exceeds the peak intensity. (2) The relationship between sample failure and pores is weak, but obvious with crack development, especially the cracks connected as a net. (3) The interface structure formed by gangue is an important source of crack development and, thus, will stimulate the development of cracks.


Coal Mining , Coal Mining/methods , Kaolin
3.
Bioresour Technol ; 400: 130676, 2024 May.
Article En | MEDLINE | ID: mdl-38588783

This work focuses to the value added utilization of animal sewage sludge into gases, bio-oil and char using synthetic zeolite (ZSM-5 and Y-zeolite) and natural sourced (diatomite, kaolin, perlite) materials as catalysts. Pyrolysis was performed in a one-stage bench-scale reactor at temperatures of 400 and 600 °C. The catalyst was mixed with the raw material before the pyrolysis. Catalysts had a significant effect on the yield of products, because the amount of volatile products was higher in their presence, than without them. In case of kaolin, due to the structural transformation occurring between 500-600 °C, a significant increase in activity was observed in terms of pyrolysis reactions resulting in volatiles. The hydrogen content of the gas products increased significantly at a temperature of 600 °C and in thermo-catalysts pyrolysis. In the presence of catalysts, bio-oil had more favourable properties.


Plant Oils , Polyphenols , Pyrolysis , Sewage , Zeolites , Zeolites/chemistry , Catalysis , Sewage/chemistry , Biofuels , Aluminum Oxide/chemistry , Kaolin/chemistry , Hot Temperature , Silicon Dioxide/chemistry , Temperature , Charcoal/chemistry
4.
J Environ Manage ; 355: 120506, 2024 Mar.
Article En | MEDLINE | ID: mdl-38447514

Plenty of heavy metals (HMs) that are adsorbed on clay minerals (such as kaolinite), in addition to low molecular-weight organic acids (such as oxalic acid (OA)) with high activities, are widespread in the natural environment. In the present study, the effects of OA on the environmental behaviors of Pb2+/Cd2+ adsorbed by kaolinite have been investigated. The effectiveness and mechanisms of calcium silicate (CS) and magnesium silicate (MS) in reducing the environmental risks of the HMs have also been studied. The results showed that the releases of Pb2+/Cd2+ increased with an increasing concentration of OA. When different dosages of CS/MS were added to the aging system, a redistribution of HMs took place and the free form of Pb2+/Cd2+ decreased to very low levels. Also, the unextractable Pb2+/Cd2+ increased to high levels. Furthermore, a series of characterizations showed that the released HMs were re-captured by the CS/MS. In addition, the CS immobilized the OA in the solution during the aging process, which also facilitated an immobilization of the carbon element in the environment. In general, the present study has contributed to a further understanding of the transport behaviors of the HMs in natural environments, and of the interactions between CS (or MS), the environmental media, and the heavy metal contaminants. In addition, this study has also provided an eco-friendly strategy for an effective remediation of heavy metal pollution.


Metals, Heavy , Soil Pollutants , Kaolin , Cadmium , Lead , Metals, Heavy/analysis , Environmental Pollution , Soil Pollutants/analysis , Soil
5.
J Cell Mol Med ; 28(6): e18161, 2024 Mar.
Article En | MEDLINE | ID: mdl-38445787

Cisplatin is an antimitotic drug able to cause acute and chronic gastrointestinal side effects. Acute side effects are attributable to mucositis while chronic ones are due to neuropathy. Cisplatin has also antibiotic properties inducing dysbiosis which enhances the inflammatory response, worsening local damage. Thus, a treatment aimed at protecting the microbiota could prevent or reduce the toxicity of chemotherapy. Furthermore, since a healthy microbiota enhances the effects of some chemotherapeutic drugs, prebiotics could also improve this drug effectiveness. We investigated whether chronic cisplatin administration determined morphological and functional alterations in mouse proximal colon and whether a diet enriched in prebiotics had protective effects. The results showed that cisplatin caused lack of weight gain, increase in kaolin intake, decrease in stool production and mucus secretion. Prebiotics prevented increases in kaolin intake, changes in stool production and mucus secretion, but had no effect on the lack of weight gain. Moreover, cisplatin determined a reduction in amplitude of spontaneous muscular contractions and of Connexin (Cx)43 expression in the interstitial cells of Cajal, changes that were partially prevented by prebiotics. In conclusion, the present study shows that daily administration of prebiotics, likely protecting the microbiota, prevents most of the colonic cisplatin-induced alterations.


Cisplatin , Prebiotics , Animals , Mice , Cisplatin/adverse effects , Kaolin , Weight Gain , Colon
6.
J Biomater Sci Polym Ed ; 35(7): 1064-1085, 2024 May.
Article En | MEDLINE | ID: mdl-38431865

Severe trauma with massive active blood loss, including liver and spleen rupture, arterial bleeding and pelvic fracture, will lead disability, malformation and even death. Therefore, it is very important to develop new, fast and efficient hemostatic materials. In this study, a novel Gelatin/Kaolin (GE/KA) composite sponge was developed. Meanwhile, to further investigate the effect of kaolin content on sponge properties, we prepared four types of sponges: GE/5% KA, GE/10% KA, GE/15% KA and GE/20% KA. The results of coagulation test in vitro showed that compared to the other groups, there were more activated adhered platelets and red blood cells on the surface of GE/15% KA. The results of hemostasis test in vivo showed that compared to other experimental groups, the GE/15% KA group had significantly less hemostasis time (liver hemostasis model: 69.50 ± 2.81 s; femoral artery hemostasis model: 75.17 ± 3.06 s) and bleeding volume (liver hemostasis model: 219.02 ± 10.39 mg; femoral artery hemostasis model: 948.00 ± 50.69 mg), and was similar to the commercial hemostasis material group. Additionally, the material properties of the sponge were characterized and its biocompatibility was verified as well through cell experiments and in vivo embedding experiments. All these results indicate that the optimal content of kaolin is 15%, which provides a theoretical basis for subsequent research. All in all, the novel GE/KA composite sponge prepared in this study can be used as a multifunctional hemostatic wound dressing for the treatment of complex wounds under various trauma scenes.


Gelatin , Hemostasis , Hemostatics , Kaolin , Wound Healing , Kaolin/chemistry , Kaolin/pharmacology , Animals , Wound Healing/drug effects , Hemostasis/drug effects , Gelatin/chemistry , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/administration & dosage , Hemorrhage/drug therapy , Mice , Blood Coagulation/drug effects , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Materials Testing
7.
Behav Processes ; 216: 105001, 2024 Mar.
Article En | MEDLINE | ID: mdl-38336238

"Pica" refers to the ingestion of non-nutritive substances by animals that would not typically consume them. The pica behavior can be utilized to investigate the internal conditions of animals' bodies. For example, rats, due to neuroanatomical reasons, cannot vomit; nevertheless, when nauseated, they ingest kaolin clay. This renders the ingestion of kaolin a practical proxy for measuring nausea in rats. The question of whether rats consume minerals other than kaolin during nauseous episodes remains unanswered. This study aims to identify a mineral better suited for detecting nausea in rats. In two experiments, nausea was induced in laboratory rats by a single dose of lithium chloride (0.15 M, 2% bw), and their mineral consumption over the 24-hour period was measured. Experiment 1 compared three minerals between rat groups: kaolin sold for nausea detection (kaolin A), kaolin for ceramics (kaolin B), and zeolite. Nauseated rats consumed all minerals, with the highest consumption occurring with kaolin B. In Experiment 2, three commercially available health soils were compared: edible kaolin, edible bentonite, and edible chalk. The most significant consumption was observed in the kaolin group, followed by the bentonite group, while nauseated rats did not consume edible chalk. These findings underscore the suitability of kaolin for nausea detection, although the extent of consumption may vary depending on the product.


Kaolin , Zeolites , Rats , Animals , Bentonite , Calcium Carbonate , Pica , Rats, Wistar , Nausea
8.
Int J Biol Macromol ; 263(Pt 1): 130304, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382796

This present work targets the production of an eco-friendly adsorbent (hereinafter KA/CEL) from kaolin clay functionalized with cellulose extract obtained from peanut shells. The adsorbents were used for decolorization of two different types of organic dyes (cationic: methylene blue, MB; anionic: Congo red, CR) from an aqueous environment. Several analytical methods, including Brunauer-Emmett-Teller (surface properties), Fourier Transforms infrared (functionality), scanning electron microscope, Energy dispersive X-Ray (morphology), and pHpzc test (surface charge), were used to attain the physicochemical characteristics of KA/CEL. The Box-Behnken Design (BBD) was applied to determine the crucial factors affecting adsorption performance. These included cellulose loading at 25 %, an adsorbent dose of 0.06 g, solution pH set at 10 for MB and 7 for CR, a temperature of 45 °C, and contact times of 12.5 min for MB and 20 min for CR dye. The adsorption data exhibited better agreement with the pseudo-second-order kinetic and Freundlich models. The Langmuir model estimated the monolayer capacity to be 291.5 mg/g for MB and 130.7 mg/g for CR at a temperature of 45 °C. This study's pivotal finding underscores the promising potential of KA/CEL as an effective adsorbent for treating wastewater contaminated with organic dyes.


Congo Red , Water Pollutants, Chemical , Coloring Agents/chemistry , Clay , Kaolin , Arachis , Methylene Blue , Cellulose , Adsorption , Kinetics , Hydrogen-Ion Concentration
9.
Colloids Surf B Biointerfaces ; 235: 113768, 2024 Mar.
Article En | MEDLINE | ID: mdl-38325142

Cancer is still one of the deadliest diseases, and diagnosing and treating it effectively remains difficult. As a result, advancements in earlier detection and better therapies are urgently needed. Conventional chemotherapy induces chemoresistance, has non-specific toxicity, and has a meager efficacy. Natural materials like nanosized clay mineral formations of various shapes (platy, tubular, spherical, and fibrous) with tunable physicochemical, morphological, and structural features serve as potential templates for these. As multifunctional biocompatible nanocarriers with numerous applications in cancer research, diagnosis, and therapy, their submicron size, individual morphology, high specific surface area, enhanced adsorption ability, cation exchange capacity, and multilayered organization of 0.7-1 nm thick single sheets have attracted significant interest. Kaolinite, halloysite, montmorillonite, laponite, bentonite, sepiolite, palygorskite, and allophane are the most typical nanoclay minerals explored for cancer. These multilayered minerals can function as nanocarriers to effectively carry a variety of anticancer medications to the tumor site and improve their stability, dispersibility, sustained release, and transport. Proteins and DNA/RNA can be transported using nanoclays with positive and negative surfaces. The platform for phototherapeutic agents can be nanoclays. Clays with bio-functionality have been developed using various surface engineering techniques, which could help treat cancer. The promise of nanoclays as distinctive crystalline materials with applications in cancer research, diagnostics, and therapy are examined in this review.


Bentonite , Neoplasms , Humans , Bentonite/chemistry , Kaolin , Clay , Minerals , Neoplasms/diagnosis , Neoplasms/drug therapy
10.
Article En | MEDLINE | ID: mdl-38407539

OBJECTIVE: To describe the use of a synthetic hemostatic dressing, QuikClot Combat Gauze (QCG), in dogs with bleeding wounds. CASE SERIES SUMMARY: Two dogs presented with bleeding traumatic wounds, and QCG was used to achieve hemostasis during stabilization of these dogs. In the other 2 dogs, QCG was used to help attenuate bleeding associated with a surgical procedure. NEW OR UNIQUE INFORMATION PROVIDED: While hemostatic dressings have been widely studied and used in human medicine, there is minimal information on the use and efficacy of these hemostatic dressings in veterinary medicine. This case series describes the use of QCG in dogs with hemorrhaging wounds. QCG could be a valuable resource in veterinary emergency and critical care settings.


Dog Diseases , Hemostatics , Dogs , Humans , Animals , Hemostatics/therapeutic use , Kaolin/therapeutic use , Hemorrhage/therapy , Hemorrhage/veterinary , Bandages/veterinary , Hemostasis , Disease Models, Animal , Dog Diseases/therapy
11.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38396728

Chronic Obstructive Pulmonary Disease (COPD) exacerbation is known for its substantial impact on morbidity and mortality among affected patients, creating a significant healthcare burden worldwide. Coagulation abnormalities have emerged as potential contributors to exacerbation pathogenesis, raising concerns about increased thrombotic events during exacerbation. The aim of this study was to explore the differences in thrombelastography (TEG) parameters and coagulation markers in COPD patients during admission with exacerbation and at a follow-up after discharge. This was a multi-center cohort study. COPD patients were enrolled within 72 h of hospitalization. The baseline assessments were Kaolin-TEG and blood samples. Statistical analysis involved using descriptive statistics; the main analysis was a paired t-test comparing coagulation parameters between exacerbation and follow-up. One hundred patients participated, 66% of whom were female, with a median age of 78.5 years and comorbidities including atrial fibrillation (18%) and essential arterial hypertension (45%), and sixty-five individuals completed a follow-up after discharge. No significant variations were observed in Kaolin-TEG or conventional coagulation markers between exacerbation and follow-up. The Activated Partial Thromboplastin Clotting Time (APTT) results were near-significant, with p = 0.08. In conclusion, TEG parameters displayed no significant alterations between exacerbation and follow-up.


Pulmonary Disease, Chronic Obstructive , Thrombelastography , Humans , Female , Aged , Male , Thrombelastography/methods , Cohort Studies , Prospective Studies , Kaolin
12.
Childs Nerv Syst ; 40(5): 1533-1539, 2024 May.
Article En | MEDLINE | ID: mdl-38194082

PURPOSE: Hydrocephalus is a brain disease prevalent in the pediatric population that presents complex pathophysiology and multiple etiologies. The best treatment is still ventricular shunting. Mechanical obstruction is the most frequent complication, but the resulting pathological effects are still unknown. OBJECTIVE: Evaluation and comparison of clinical, histopathological, and immunohistochemical aspects in the acute phase of experimental hydrocephalus induced by kaolin, after treatment with adapted shunt, and after shunt obstruction and posterior disobstruction. METHODS: Wistar rats aged 7 days were used and divided into 4 groups: control group without kaolin injection (n = 6), untreated hydrocephalic group (n = 5), hydrocephalic group treated with ventriculosubcutaneous shunt (DVSC) (n = 7), and hydrocephalic group treated with shunt, posteriorly obstructed and disobstructed (n = 5). The animals were submitted to memory and spatial learning evaluation through the Morris water maze test. The rats were sacrificed at 28 days of age and histological analysis of the brains was performed with luxol fast blue, in addition to immunohistochemical analysis in order to evaluate reactive astrocytosis, inflammation, neuronal labeling, and apoptotic activity. RESULTS: The group with shunt obstruction had worse performance in memory tests. Reactive astrocytosis was more evident in this group, as was the inflammatory response. CONCLUSIONS: Obstruction of the shunt results in impaired performance of behavioral tests and causes irreversible histopathological changes when compared to findings in the group with treated hydrocephalus, even after unblocking the system. The developed model is feasible and efficient in simulating the clinical context of shunt dysfunction.


Hydrocephalus , Kaolin , Child , Humans , Rats , Animals , Rats, Wistar , Gliosis/pathology , Hydrocephalus/surgery , Brain/pathology
13.
J Comp Neurol ; 532(2): e25578, 2024 02.
Article En | MEDLINE | ID: mdl-38175813

Vanadium is a prevalent neurotoxic transition metal with therapeutic potentials in some neurological conditions. Hydrocephalus poses a major clinical burden in neurological practice in Africa. Its primary treatment (shunting) has complications, including infection and blockage; alternative drug-based therapies are therefore necessary. This study investigates the function and cytoarchitecture of motor and cerebellar cortices in juvenile hydrocephalic mice following treatment with varying doses of vanadium. Fifty juvenile mice were allocated into five groups (n = 10 each): controls, hydrocephalus-only, low- (0.15 mg/kg), moderate- (0.3 mg/kg), and high- (3.0 mg/kg) dose vanadium groups. Hydrocephalus was induced by the intracisternal injection of kaolin and sodium metavanadate administered by intraperitoneal injection 72hourly for 28 days. Neurobehavioral tests: open field, hanging wire, and pole tests, were carried out to assess locomotion, muscular strength, and motor coordination, respectively. The cerebral motor and the cerebellar cortices were processed for cresyl violet staining and immunohistochemistry for neurons (NeuN) and astrocytes (glial fibrillary acidic protein). Hydrocephalic mice exhibited body weight loss and behavioral deficits. Horizontal and vertical movements and latency to fall from hanging wire were significantly reduced, while latency to turn and descend the pole were prolonged in hydrocephalic mice, suggesting impaired motor ability; this was improved in vanadium-treated mice. Increased neuronal count, pyknotic cells, neurodegeneration and reactive astrogliosis were observed in the hydrocephalic mice. These were mostly mitigated in the vanadium-treated mice, except in the high-dose group where astrogliosis persisted. These results demonstrate a neuroprotective potential of vanadium administration in hydrocephalus. The molecular basis of these effects needs further exploration.


Hydrocephalus , Vanadium , Animals , Mice , Vanadium/adverse effects , Gliosis/drug therapy , Kaolin/adverse effects , Hydrocephalus/chemically induced , Hydrocephalus/drug therapy , Neurons
14.
Environ Res ; 247: 118257, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38262511

This study introduces the UV/glucose-oxidase@Kaolin (GOD@Kaolin) coupled organic green rust (OGR) system (UV/OGR/GOD@Kaolin) to investigate the promotion of glucose oxidase activity by UV light and its synergistic degradation mechanism for photosensitive pollutants, specifically targeting the efficient degradation of 4-chlorophenol (4-CP). The enzyme system demonstrates its ability to overcome drawbacks associated with traditional Fenton systems, including a narrow pH range and high localized concentration of H2O2, by gradually releasing hydrogen peroxide in situ within a neutral environment. In the presence of UV radiation under specific conditions, enhanced enzyme activity is observed, resulting in increased efficiency in pollutant removal. The gradual release of hydrogen peroxide plays a crucial role in preventing unwanted reactions among active substances. These unique features facilitate the generation of highly reactive species, such as Fe(IV)O, •OH, and •O2-, tailored to efficiently target the organic components of interest. Additionally, the system establishes a positive iron cycle, ensuring a sustained reactive capability throughout the degradation process. The results highlight the UV/OGR/GOD@Kaolin system as an effective and environmentally friendly approach for the degradation of 4-CP, and the resilience of the enzyme extends the system's applicability to a broader range of scenarios.


Environmental Pollutants , Water Pollutants, Chemical , Ultraviolet Rays , Hydrogen Peroxide/chemistry , Glucose Oxidase/metabolism , Kaolin , Glucose , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
15.
BMC Pregnancy Childbirth ; 24(1): 39, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38182997

BACKGROUND: Anaemia during pregnancy causes adverse outcomes to the woman and the foetus, including anaemic heart failure, prematurity, and intrauterine growth restriction. Iron deficiency anaemia (IDA) is the leading cause of anaemia and oral iron supplementation during pregnancy is widely recommended. However, little focus is directed to dietary intake. This study estimates the contribution of IDA among pregnant women and examines its risk factors (including dietary) in those with moderate or severe IDA in Lagos and Kano states, Nigeria. METHODS: In this cross-sectional study, 11,582 women were screened for anaemia at 20-32 weeks gestation. The 872 who had moderate or severe anaemia (haemoglobin concentration < 10 g/dL) were included in this study. Iron deficiency was defined as serum ferritin level < 30 ng/mL. We described the sociodemographic and obstetric characteristics of the sample and their self-report of consumption of common food items. We conducted bivariate and multivariable logistic regression analysis to identify risk factors associated with IDA. RESULTS: Iron deficiency was observed among 41% (95%CI: 38 - 45) of women with moderate or severe anaemia and the prevalence increased with gestational age. The odds for IDA reduces from aOR: 0.36 (95%CI: 0.13 - 0.98) among pregnant women who consume green leafy vegetables every 2-3 weeks, to 0.26 (95%CI: 0.09 - 0.73) among daily consumers, compared to those who do not eat it. Daily consumption of edible kaolin clay was associated with increased odds of having IDA compared to non-consumption, aOR 9.13 (95%CI: 3.27 - 25.48). Consumption of soybeans three to four times a week was associated with higher odds of IDA compared to non-consumption, aOR: 1.78 (95%CI: 1.12 - 2.82). CONCLUSION: About 4 in 10 women with moderate or severe anaemia during pregnancy had IDA. Our study provides evidence for the protective effect of green leafy vegetables against IDA while self-reported consumption of edible kaolin clay and soybeans appeared to increase the odds of having IDA during pregnancy. Health education on diet during pregnancy needs to be strengthened since this could potentially increase awareness and change behaviours that could reduce IDA among pregnant women with moderate or severe anaemia in Nigeria and other countries.


Anemia , Iron Deficiencies , Pregnancy , Female , Humans , Cross-Sectional Studies , Nigeria/epidemiology , Pregnant Women , Prevalence , Clay , Kaolin , Iron , Anemia/epidemiology , Risk Factors
16.
J Hazard Mater ; 465: 133476, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38232546

In this work, novel multifunctional cationic template copolymers with flocculation and sterilization capabilities were synthesized using a low-pressure ultraviolet (LP-UV) template polymerization method for the removal of kaolin and Escherichia coli (E. coli) from water. The influence of template agents on the structural performance of the copolymers was evaluated through characterization, which showed that template copolymer TPADM possesses a higher cationic charge density and a more complex rough surface, contributing to better flocculation performance than that of the non-template copolymer CPADM. Under optimal experimental conditions, TPADM-1 exhibited removal rates of 98.45% for kaolin and 99% for E. coli (OD600 =0.04), marginally outperforming the non-template copolymer. Simultaneously, TPADM-1 produced good adaptability to kaolin and E. coli wastewater in terms of wide pH, speculating that charge neutralization, adsorption bridging, patching, and sweeping simultaneously dominate the flocculation mechanism. Interestingly, SEM and 3D-EEM analysis confirm that the sterilization of E. coli occurs through two distinct functions: initially adsorption followed by subsequent cell membrane rupture and leakage of cellular contents, ultimately leading to cell death. This research further confirms the feasibility of the designed novel multifunctional copolymers for achieving simultaneous disinfection and turbidity removal, demonstrating practical applicability in real water treatment processes.


Quaternary Ammonium Compounds , Water Purification , Flocculation , Kaolin/chemistry , Escherichia coli , Anti-Bacterial Agents , Polymers/chemistry , Water Purification/methods , Cations , Disinfection
17.
Sci Rep ; 14(1): 1259, 2024 01 13.
Article En | MEDLINE | ID: mdl-38218904

In this study, biochar (BC) and hydrochar (HC) composites were synthesized with natural kaolinite clay and their properties, stability, carbon (C) sequestration potential, polycyclic aromatic hydrocarbons (PAHs) toxicity, and impacts on maize germination and growth were explored. Conocarpus waste was pretreated with 0%, 10%, and 20% kaolinite and pyrolyzed to produce BCs (BC, BCK10, and BCK20, respectively), while hydrothermalized to produce HCs (HC, HCK10, and HCK20, respectively). The synthesized materials were characterized using X-ray diffraction, scanning electron microscope analyses, Fourier transform infrared, thermogravimetric analysis, surface area, proximate analyses, and chemical analysis to investigate the distinction in physiochemical and structural characteristics. The BCs showed higher C contents (85.73-92.50%) as compared to HCs (58.81-61.11%). The BCs demonstrated a higher thermal stability, aromaticity, and C sequestration potential than HCs. Kaolinite enriched-BCs showed the highest cation exchange capacity than pristine BC (34.97% higher in BCK10 and 38.04% higher in BCK20 than pristine BC), while surface area was the highest in kaolinite composited HCs (202.8% higher in HCK10 and 190.2% higher in HCK20 than pristine HC). The recalcitrance index (R50) speculated a higher recalcitrance for BC, BCK10, and BCK20 (R50 > 0.7), minimal degradability for HCK10 and HCK20 (0.5 < R50 < 0.7), and higher degradability for biomass and HC (R50 < 0.5). Overall, increasing the kaolinite enrichment percentage significantly enhanced the thermal stability and C sequestration potential of charred materials, which may be attributed to changes in the structural arrangements. The ∑ total PAHs concentration in the synthesized materials were below the USEPA's suggested limits, indicating their safe use as soil amendments. Germination indices reflected positive impacts of synthesized charred materials on maize germination and growth. Therefore, we propose that kaolinite-composited BCs and HCs could be considered as efficient and cost-effective soil amendments for improving plant growth.


Kaolin , Zea mays , Charcoal/chemistry , Soil/chemistry
18.
Int J Biol Macromol ; 254(Pt 3): 128002, 2024 Jan.
Article En | MEDLINE | ID: mdl-37949280

Blue algae, a type of harmful microalgae, are responsible for causing harmful algal blooms that result in severe environmental issues. To address this problem, a biopolysaccharide-based flocculant was developed for treating blue algae blooms. This flocculant was created by modifying high molecular weight dextran using the natural cationic monomer betaine (Dex-Bet), making it environmentally friendly. Various techniques were used to characterize the prepared Dex-Bet flocculant, including infrared spectroscopy (FTIR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The effectiveness of the Dex-Bet flocculant was evaluated using kaolin-simulated wastewater. The results showed that the treated supernatant had a transmittance of up to 98.25 %. Zeta potential analysis revealed that the main mechanisms of flocculation were charge neutralization, charge patching, and adsorption bridging. The application of Dex-Bet in treating blue-green algae resulted in a maximum removal rate of 98.2 %. This study provides a potential flocculant for blue algae bloom treatment.


Dextrans , Kaolin , Kaolin/chemistry , Wastewater , Magnetic Resonance Spectroscopy , Eutrophication , Flocculation
19.
Int J Biol Macromol ; 254(Pt 2): 127927, 2024 Jan.
Article En | MEDLINE | ID: mdl-37944730

Starch film has poor tensile properties and poor water resistance. We aimed to improve these properties by adding kaolin impregnated with calico plant extract (CP-Kaolin). UV-Vis spectrophotometry showed that the calico plant extract (CPE) contained 4867.52 mg/L of total phenolic compounds and betacyanins were the predominant constituents. CP-Kaolin was characterized by Fourier transform infrared spectroscopy (FTIR), zeta potential, scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. FTIR analysis showed that betacyanins were adsorbed on kaolin via hydrogen bonding. Zeta potential analysis confirmed the adsorption of betacyanins on kaolin. The intercalation of betacyanins between kaolin platelets was observed by XRD. SEM revealed that CP-Kaolin was well dispersed and embedded within the starch matrix. It was found that the addition of 10 wt% of CP-Kaolin increased the water resistance, tensile strength and thermal stability of starch film. Moreover, starch film containing 10 wt% of CP-Kaolin was sensitive to the change in pH of the fish during storage. Therefore, the addition of CP-Kaolin improved the properties of starch film and starch film composite with CP-Kaolin could be applied as a smart packaging in the food industry.


Plant Extracts , Starch , Animals , Starch/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Kaolin , Betacyanins , Tensile Strength , Spectroscopy, Fourier Transform Infrared , Water , Food Packaging
20.
J Burn Care Res ; 45(1): 70-79, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37837656

Although use of thromboelastography (TEG) to diagnose coagulopathy and guide clinical decision-making is increasing, relative performance of different TEG methods has not been well-defined. Rapid-TEG (rTEG), kaolin-TEG (kTEG), and native-TEG (nTEG) were performed on blood samples from burn patients presenting to a regional center from admission to 21 days. Patients were categorized by burn severity, mortality, and fibrinolytic phenotypes (Shutdown [SD], Physiologic [PHYS], and Hyperfibrinolytic [HF]). Manufacturer ranges and published TEG cutoffs were examined. Concordance correlations (Rc) of TEG parameters (R, α-angle, maximum amplitude [MA], LY30) measured agreement and Cohen's Kappa (κ) determined interclass reliability. Patients (n = 121) were mostly male (n = 84; 69.4%), with median age 40 years, median TBSA burn 13%, and mortality 17% (n = 21). Severe burns (≥40% TBSA) were associated with lower admission α-angle for rTEG (P = .03) and lower MA for rTEG (P = .02) and kTEG (P = .01). MA was lower in patients who died (nTEG, P = .04; kTEG, P = .02; rTEG, P = .003). Admission HF was associated with increased mortality (OR, 10.45; 95% CI, 2.54-43.31, P = .001) on rTEG only. Delayed SD was associated with mortality using rTEG and nTEG (OR 9.46; 95% CI, 1.96-45.73; P = .005 and OR, 6.91; 95% CI, 1.35-35.48; P = .02). Admission TEGs showed poor agreement on R-time (Rc, 0.00-0.56) and α-angle (0.40 to 0.55), and moderate agreement on MA (0.67-0.81) and LY30 (0.72-0.93). Interclass reliability was lowest for R-time (κ, -0.07 to 0.01) and α-angle (-0.06 to 0.17) and highest for MA (0.22-0.51) and LY30 (0.29-0.49). Choice of TEG method may impact clinical decision-making. rTEG appeared most sensitive in parameter-specific associations with injury severity, abnormal fibrinolysis, and mortality.


Blood Coagulation Disorders , Burns , Humans , Male , Adult , Female , Thrombelastography/methods , Kaolin , Burns/complications , Reproducibility of Results , Blood Coagulation Disorders/etiology
...